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1 Introduction
This paper introduce constraints for std::make_from_tuple to make it SFINAE friendly.

2 Motivation
LWG3528 introduce constraints requires is_constructible_v<T, decltype(get<I>( declval<Tuple>()))...>
for constexpr T make-from-tuple-impl(Tuple&& t, index_- sequence<I...>). When someone write SFI-
NAE code like the following to check whether T can make from tuple, they may meet hard errors like “no
matching function for call to ‘make-from-tuple-impl’…”.
template <class T, class Tuple, class = void>
inline constexpr bool has_make_from_tuple = false;

template <class T, class Tuple>
inline constexpr bool has_make_from_tuple<

T, Tuple,
std::void_t<decltype(std::make_from_tuple<T>(std::declval<Tuple>()))>> =
true;

struct A {
int a;

};

static_assert(!has_make_from_tuple<int *, std::tuple<A *>>);

Even If the effects are “Equivalent to” calling a constrained function, the constraints has not apply to
std::make_from_tuple. This is somehow unclear when the constraints are not literally specified with “Con-
straints:” in the standard wording ([16.3.2.4 [structure.specifications]/p4]). At least “Equivalent to” doesn’t
propagate every substitution failure in immediate context. In the case of std::make_from_tuple/[LWG3528],
the constrains of make-from-tuple-impl, the constraints were introduced via a requires-clause but not literal
“Constraints”. Some implementors believed the requires-clause should be treated same as Constraints, but this
is not explicitly stated.

3 Impact on the Standard
This proposal is a pure library improvement.
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4 Implementation Experience
I’ve implemented this improvement in:

— libc++: [libc++] Implement LWG3528 (make_from_tuple can perform (the equivalent of) a C-style cast).
— mivrosoft/STL: <tuple>: Make std::make_from_tuple SFINAE friendly.

5 Proposed Wording
Modify §22.4.6 [tuple.apply] of [N4971] as indicated:

template<class T, tuple-like Tuple>
constexpr T make_from_tuple(Tuple&& t);

3 Mandates: If tuple_size_v<remove_reference_t> is 1, then reference_constructs_from_temporary_v<T,
decltype(get<0>(declval()))> is false.

4 Effects: Given the exposition-only function template:
3 Let I be the pack 0, 1, ..., (tuple_size_v<remove_reference_t<Tuple>> - 1).
4 Constraints:

— is_constructible_v<T, decltype(get<I>(declval<Tuple>()))...> is true.
— If tuple_size_v<remove_reference_t> is 1, then reference_constructs_- from_temporary_v<T, de-

cltype(get<0>(declval()))> is false.
5 Effects: Given the exposition-only function template:

namespace std {
template<class T, tuple-like Tuple, size_t... I>
requires is_constructible_v<T, decltype(get<I>(declval<Tuple>()))...>

constexpr T make-from-tuple-impl(Tuple&& t, index_sequence<I...>) { // exposition only
return T(get<I>(std::forward<Tuple>(t))...);

}
}

Equivalent to:
return make-from-tuple-impl<T>(

std::forward<Tuple>(t),
make_index_sequence<tuple_size_v<remove_reference_t<Tuple>>>{});

[Note 1: The type of T must be supplied as an explicit template parameter,
as it cannot be deduced from the argument list. — end note]
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