
Make std::make_from_tuple SFINAE friendly
Document #: P????R0
Date: 2024-04-22
Project: Programming Language C++
Audience: Library Evolution Group
Reply-to: Yihan Wang

<yronglin777@gmail.com>

1 Introduction
This paper introduce constraints for std::make_from_tuple to make it SFINAE friendly.

2 Motivation
LWG3528 introduce constraints requires is_constructible_v<T, decltype(get<I>(declval<Tuple>()))...>
for constexpr T make-from-tuple-impl(Tuple&& t, index_- sequence<I...>). When someone write SFI-
NAE code like the following to check whether T can make from tuple, they may meet hard errors like “no
matching function for call to ‘make-from-tuple-impl’…”.
template <class T, class Tuple, class = void>
inline constexpr bool has_make_from_tuple = false;

template <class T, class Tuple>
inline constexpr bool has_make_from_tuple<

T, Tuple,
std::void_t<decltype(std::make_from_tuple<T>(std::declval<Tuple>()))>> =
true;

struct A {
int a;

};

static_assert(!has_make_from_tuple<int *, std::tuple<A *>>);

Even If the effects are “Equivalent to” calling a constrained function, the constraints has not apply to
std::make_from_tuple. This is somehow unclear when the constraints are not literally specified with “Con-
straints:” in the standard wording ([16.3.2.4 [structure.specifications]/p4]). At least “Equivalent to” doesn’t
propagate every substitution failure in immediate context. In the case of std::make_from_tuple/[LWG3528],
the constrains of make-from-tuple-impl, the constraints were introduced via a requires-clause but not literal
“Constraints”. Some implementors believed the requires-clause should be treated same as Constraints, but this
is not explicitly stated.

3 Impact on the Standard
This proposal is a pure library improvement.

1

mailto:yronglin777@gmail.com
https://wg21.link/structure.specifications
https://wg21.link/LWG3528

4 Implementation Experience
I’ve implemented this improvement in:

— libc++: [libc++] Implement LWG3528 (make_from_tuple can perform (the equivalent of) a C-style cast).
— mivrosoft/STL: <tuple>: Make std::make_from_tuple SFINAE friendly.

5 Proposed Wording
Modify §22.4.6 [tuple.apply] of [N4971] as indicated:

template<class T, tuple-like Tuple>
constexpr T make_from_tuple(Tuple&& t);

3 Mandates: If tuple_size_v<remove_reference_t> is 1, then reference_constructs_from_temporary_v<T,
decltype(get<0>(declval()))> is false.

4 Effects: Given the exposition-only function template:
3 Let I be the pack 0, 1, ..., (tuple_size_v<remove_reference_t<Tuple>> - 1).
4 Constraints:

— is_constructible_v<T, decltype(get<I>(declval<Tuple>()))...> is true.
— If tuple_size_v<remove_reference_t> is 1, then reference_constructs_- from_temporary_v<T, de-

cltype(get<0>(declval()))> is false.
5 Effects: Given the exposition-only function template:

namespace std {
template<class T, tuple-like Tuple, size_t... I>
requires is_constructible_v<T, decltype(get<I>(declval<Tuple>()))...>

constexpr T make-from-tuple-impl(Tuple&& t, index_sequence<I...>) { // exposition only
return T(get<I>(std::forward<Tuple>(t))...);

}
}

Equivalent to:
return make-from-tuple-impl<T>(

std::forward<Tuple>(t),
make_index_sequence<tuple_size_v<remove_reference_t<Tuple>>>{});

[Note 1: The type of T must be supplied as an explicit template parameter,
as it cannot be deduced from the argument list. — end note]

6 Acknowledgements
Thank you to Jiang An, Mark de Wever, Stephan T. Lavavej, Jonathan Wakely, Barry Revzin, Daniel Krügler,
and everyone else who contributed to the discussions, and encouraged me to write this paper.

7 References
[LWG3528] Tim Song. 2023. make_from_tuple can perform (the equivalent of) a C-style cast.

https://wg21.link/LWG3528

[N4971] 2023. Working Draft, Standard for Programming Language C++.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4971.pdf

2

https://github.com/llvm/llvm-project/pull/85263
https://github.com/microsoft/STL/pull/4528
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4971.pdf
https://wg21.link/LWG3528
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4971.pdf

	Introduction
	Motivation
	Impact on the Standard
	Implementation Experience
	Proposed Wording
	Acknowledgements
	References

